China factory 10mm 5V DC Micro Stepper Minature Stepping Motor vacuum pump ac system

Product Description

Technical Parameter of Micro Stepper Motor
No. Model No. OD
(mm)
Step Angle
(°)
Existation
Method
Drive
Mode
Voltage
(V DC)
Current
/Phase
(mA)
Resistance
/Phase
(Ω)
Output Torque
(gf.cm)
Insolution resistance
(Ω)
Noise
(dB)
Working
environment temperature(ºC)
1 01-005-001 Φ8 18 2-2 Phase Exciting BI-Polar Drive 5.0  / 30 100.00  100V AC, 1S ≤50 -40~+80
2 07-005-001 Φ6 18 2-2 Phase Exciting BI-Polar Drive 3.3  300 40 20.00  100V AC, 1S ≤50 -20~+80
3 07-005-002 Φ6 18 2-2 Phase Exciting BI-Polar Drive 3.3  165 20 / 100V AC, 1S ≤50 -20~+80
4 07-005-011 Φ6 18 2-2 Phase Exciting BI-Polar Drive 3.3  110 30 0.06  100V AC, 1S ≤50 -20~+80
5 07-005-016 Φ6 18 2-2 Phase Exciting BI-Polar Drive 3.3  300 14 0.20  100V AC, 1S ≤50 -20~+80
6 07-005-571 Φ8 18 2-2 Phase Exciting BI-Polar Drive 3.3  160 20 80.00  100V AC, 1S ≤50 -20~+80
7 07-005-031 Φ8 18 2-2 Phase Exciting BI-Polar Drive 3.3  250 20 0.15  300V AC, 1S ≤50 -20~+80
8 07-005-032 Φ8 18 2-2 Phase Exciting BI-Polar Drive 3.3  165 20 1.50  100V AC, 1S ≤50 -20~+80
9 07-005-033 Φ8 18 2-2 Phase Exciting BI-Polar Drive 3.3  160 20 0.25  100V AC, 1S ≤50 -20~+80
10 07-005-034 Φ8 18 2-2 Phase Exciting BI-Polar Drive 5.0  100 50 0.23  100V AC, 1S ≤50 -20~+80
11 07-005-036 Φ8 18 2-2 Phase Exciting BI-Polar Drive 5.0  450 14 0.60  300V AC, 1S ≤50 -20~+80
12 07-005-041 Φ10 18 2-2 Phase Exciting BI-Polar Drive 5.0  90 55 0.30  300V AC, 1S ≤50 -20~+80
13 07-005-042 Φ10 18 2-2 Phase Exciting BI-Polar Drive 5.0  90 55 0.30  300V AC, 1S ≤50 -20~+80
14 07-005-043 Φ10 18 2-2 Phase Exciting BI-Polar Drive 5.0  160 31 5.00  100V AC, 1S ≤50 -20~+80
15 07-005-044 Φ10 0.36 2-2 Phase Exciting BI-Polar Drive 5.0  160 31 7.00  100V AC, 1S ≤50 -20~+80
16 07-005-060 Φ15 18 2-2 Phase Exciting BI-Polar Drive 12.0  400 31 180.00  100V AC, 1S ≤50 -20~+80
17 07-005-061 Φ15 18 2-2 Phase Exciting BI-Polar Drive 6.0  300 15 200.00  100V AC, 1S ≤50 -20~+80
18 07-005-062 Φ15 18 2-2 Phase Exciting BI-Polar Drive 6.0  300 15 200.00  100V AC, 1S ≤50 -20~+80
19 07-005-079 Φ15 18 2-2 Phase Exciting BI-Polar Drive 12.0  760 31 720.00  100V AC, 1S ≤50 -20~+80
20 07-005-081 Φ20 18 2-2 Phase Exciting BI-Polar Drive 12.0  300 40 30.00  100V AC, 1S ≤50 -20~+80

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Security Camera Lens Digital Camera Lens
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: 2-2 Phase Exciting
Function: Driving
Number of Poles: 2
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

What are the key differences between brushed and brushless DC motors?

Brushed and brushless DC motors are two distinct types of motors that differ in their construction, operation, and performance characteristics. Here’s a detailed explanation of the key differences between brushed and brushless DC motors:

1. Construction:

Brushed DC Motors: Brushed DC motors have a relatively simple construction. They consist of a rotor with armature windings and a commutator, and a stator with permanent magnets or electromagnets. The commutator and brushes make physical contact to provide electrical connections to the armature windings.

Brushless DC Motors: Brushless DC motors have a more complex construction. They typically consist of a stationary stator with permanent magnets or electromagnets and a rotor with multiple coils or windings. The rotor does not have a commutator or brushes.

2. Commutation:

Brushed DC Motors: In brushed DC motors, the commutator and brushes are responsible for the commutation process. The brushes make contact with different segments of the commutator, reversing the direction of the current through the armature windings as the rotor rotates. This switching of the current direction generates the necessary torque for motor rotation.

Brushless DC Motors: Brushless DC motors use electronic commutation instead of mechanical commutation. The commutation process is managed by an external electronic controller or driver. The controller determines the timing and sequence of energizing the stator windings based on the rotor position, allowing for precise control of motor operation.

3. Efficiency:

Brushed DC Motors: Brushed DC motors tend to have lower efficiency compared to brushless DC motors. This is primarily due to the energy losses associated with the brushes and commutation process. The friction and wear between the brushes and commutator result in additional power dissipation and reduce overall motor efficiency.

Brushless DC Motors: Brushless DC motors are known for their higher efficiency. Since they eliminate the use of brushes and commutators, there are fewer energy losses and lower frictional losses. The electronic commutation system allows for precise control of the motor’s operation, maximizing efficiency and reducing power consumption.

4. Maintenance:

Brushed DC Motors: Brushed DC motors require regular maintenance due to the wear and tear of the brushes and commutator. The brushes need periodic replacement, and the commutator requires cleaning to maintain proper electrical contact. The maintenance requirements contribute to additional costs and downtime for brushed DC motors.

Brushless DC Motors: Brushless DC motors have a relatively maintenance-free operation. As they do not have brushes or commutators, there is no need for brush replacement or commutator cleaning. This results in reduced maintenance costs and increased reliability of brushless DC motors.

5. Speed Control:

Brushed DC Motors: Brushed DC motors offer simpler speed control options. The speed can be controlled by adjusting the applied voltage or by varying the resistance in the armature circuit. This allows for relatively straightforward speed regulation.

Brushless DC Motors: Brushless DC motors provide more advanced and precise speed control capabilities. The speed can be controlled through the electronic commutation system by adjusting the timing and sequence of the stator windings’ energization. This allows for precise control of the motor’s speed and acceleration.

These key differences between brushed and brushless DC motors make each type suitable for different applications depending on factors such as efficiency requirements, maintenance considerations, and control complexity.

dc motor

What is the significance of back EMF (electromotive force) in DC motor performance?

The significance of back EMF (electromotive force) in DC motor performance is crucial to understanding the behavior and operation of DC motors. Back EMF is an inherent characteristic of DC motors and plays a pivotal role in their efficiency, speed regulation, and overall performance. Here’s a detailed explanation of the significance of back EMF in DC motor performance:

When a DC motor operates, it generates a voltage known as back EMF or counter electromotive force. This voltage opposes the applied voltage and is caused by the rotation of the motor’s armature within the magnetic field. The back EMF is directly proportional to the rotational speed of the motor.

The significance of back EMF can be understood through the following aspects:

1. Speed Regulation:

Back EMF is crucial for regulating the speed of a DC motor. As the motor rotates faster, the back EMF increases, which reduces the effective voltage across the motor’s armature. Consequently, the armature current decreases, limiting the motor’s speed. This self-regulating characteristic helps maintain a relatively constant speed under varying load conditions. It allows the motor to deliver the required torque while preventing excessive speed that can potentially damage the motor or the driven equipment.

2. Efficiency:

Back EMF plays a significant role in the efficiency of a DC motor. When the motor is loaded and drawing current, the power supplied to the motor is the product of the armature current and the applied voltage. However, the electrical power converted into mechanical power is reduced by the power consumed by the back EMF. The back EMF represents the energy returned to the power supply as the motor generates its own voltage. By reducing the effective voltage across the motor, it helps minimize power losses due to electrical resistance and improves the overall efficiency of the motor.

3. Motor Protection:

The presence of back EMF also provides a level of protection to the motor. When a DC motor is operating and the load on the motor suddenly decreases, such as when the driven equipment is disconnected, the motor’s speed can increase rapidly. This increase in speed leads to a higher back EMF, which reduces the armature current and prevents excessive current flow. By limiting the current, the back EMF helps protect the motor from overloading and potential damage.

4. Voltage Regulation:

Back EMF affects the voltage regulation in a DC motor. When the motor is operating, the back EMF opposes the applied voltage. As the motor load increases, the voltage drop across the armature resistance and other internal losses also increase. The back EMF helps compensate for these voltage drops, ensuring that the motor receives an adequate voltage to maintain its performance and torque output.

5. Control and Dynamic Response:

Back EMF provides valuable information for motor control and dynamic response. By measuring the back EMF voltage, the rotational speed of the motor can be estimated, allowing for precise speed control and feedback. This information is crucial for applications that require accurate speed regulation, such as robotics or industrial automation.

In summary, the significance of back EMF in DC motor performance cannot be overstated. It influences speed regulation, efficiency, motor protection, voltage regulation, and control capabilities. By understanding and utilizing the inherent characteristics of back EMF, engineers can design and optimize DC motor systems for various applications, ensuring reliable and efficient operation.

dc motor

Are there safety considerations or maintenance practices associated with DC motors?

Yes, there are safety considerations and maintenance practices associated with DC (Direct Current) motors. DC motors, like any other electrical equipment, require proper handling, maintenance, and adherence to safety guidelines to ensure safe operation and longevity. Here’s a detailed explanation of the safety considerations and maintenance practices associated with DC motors:

Safety Considerations:

Electrical Hazards: DC motors operate with high voltages and currents, posing electrical hazards. It is essential to follow proper electrical safety practices, such as wearing appropriate personal protective equipment (PPE) and ensuring that electrical connections are secure and insulated. Proper grounding and isolation techniques should be employed to prevent electrical shocks and accidents.

Lockout/Tagout: DC motors, especially in industrial settings, may require maintenance or repair work. It is crucial to implement lockout/tagout procedures to isolate the motor from its power source before performing any maintenance or servicing activities. This ensures that the motor cannot be accidentally energized during work, preventing potential injuries or accidents.

Overheating and Ventilation: DC motors can generate heat during operation. Adequate ventilation and cooling measures should be implemented to prevent overheating, as excessive heat can lead to motor damage or fire hazards. Proper airflow and ventilation around the motor should be maintained, and any obstructions or debris should be cleared.

Mechanical Hazards: DC motors often have rotating parts and shafts. Safety guards or enclosures should be installed to prevent accidental contact with moving components, mitigating the risk of injuries. Operators and maintenance personnel should be trained to handle motors safely and avoid placing their hands or clothing near rotating parts while the motor is running.

Maintenance Practices:

Cleaning and Inspection: Regular cleaning and inspection of DC motors are essential for their proper functioning. Accumulated dirt, dust, or debris should be removed from the motor’s exterior and internal components. Visual inspections should be carried out to check for any signs of wear, damage, loose connections, or overheating. Bearings, if applicable, should be inspected and lubricated as per the manufacturer’s recommendations.

Brush Maintenance: DC motors that use brushes for commutation require regular inspection and maintenance of the brushes. The brushes should be checked for wear, proper alignment, and smooth operation. Worn-out brushes should be replaced to ensure efficient motor performance. Brush holders and springs should also be inspected and cleaned as necessary.

Electrical Connections: The electrical connections of DC motors should be periodically checked to ensure they are tight, secure, and free from corrosion. Loose or damaged connections can lead to voltage drops, overheating, and poor motor performance. Any issues with the connections should be addressed promptly to maintain safe and reliable operation.

Insulation Testing: Insulation resistance testing should be performed periodically to assess the condition of the motor’s insulation system. This helps identify any insulation breakdown or degradation, which can lead to electrical faults or motor failures. Insulation resistance testing should be conducted following appropriate safety procedures and using suitable testing equipment.

Alignment and Balance: Proper alignment and balance of DC motors are crucial for their smooth operation and longevity. Misalignment or imbalance can result in increased vibrations, excessive wear on bearings, and reduced motor efficiency. Regular checks and adjustments should be made to ensure the motor is correctly aligned and balanced as per the manufacturer’s specifications.

Manufacturer’s Recommendations: It is important to refer to the manufacturer’s guidelines and recommendations for specific maintenance practices and intervals. Each DC motor model may have unique requirements, and following the manufacturer’s instructions ensures that maintenance is carried out correctly and in accordance with the motor’s design and specifications.

By adhering to safety considerations and implementing proper maintenance practices, DC motors can operate safely, reliably, and efficiently throughout their service life.

China factory 10mm 5V DC Micro Stepper Minature Stepping Motor   vacuum pump ac system	China factory 10mm 5V DC Micro Stepper Minature Stepping Motor   vacuum pump ac system
editor by CX 2024-04-19

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *