China Good quality CHINAMFG 1205m-6b403 DC Motor Controller 60-72V 400A Forklift Parts Electric Motor vacuum pump electric

Product Description

Models 1204M / 1205M / 1209M / 1221M

Product Description

 

Curtis Models 1204M/1205M/1209M/1221M provide fully programmable control of DC series motors performing on-vehicle traction or pump duties. These microprocessor-based MOSFET controllers add flexibility and versatility to the time-proven CHINAMFG series motor controller family. Primarily designed for battery-powered vehicle applications using either electric or hydrostatic traction. These include industrial trucks, personnel carriers, mobile elevating work platforms, and golf and utility vehicles.

  •  

    FEATURES

    Controllable Power Pulse Width Modulation (PWM) control with programmable speed, acceleration rate, and current limit. Short duration boost capability (5 sec, 110% of 2 min current rating). Allows clearing of obstacles, climbing ramps. High efficiency, silent operation. Costs, heat-sinking requirements, motor and battery losses reduced. Low-end torque, range, and battery life maximized.

     

    Programmable and Flexible

    Fully programmable via CHINAMFG hand-held tools or CHINAMFG PC programming software model kits 1314K. Supports multiple throttle types and high pedal disable (HPD) options. LED output for easy system troubleshooting via flash codes. Fully programmable analog throttle input for precise speed control with a variety of signal sources. Programmable under voltage cutback caters for different battery types. Programmable, variable, or fixed plug braking modes. Plug braking diode internal to controller. Models available without A2 busbar for applications such as pump control that do not require plug braking.

     

    Key Features:

  • CURTIS Model: 1204M-5305
  • Norminal Battery Voltage (Volts): 48V (default setting) or 36V
  • 2 Minute Current Rating (amps): 325
  • 5 Second Boost Current Rating (amps): 358
  • 1 Hour Current Rating (amps): 140
  • Plug Braking (A2 Busbar): Yes
  • PWM operating frequency: 15.6 kHz
  • Electrical isolation to heatsink (min.): 500 VAC
  • KSI input current (no contactors engaged):
    • 70 mA without programmer
    • 130 mA with programmer
  • Logic input current: < 2 mA
  • Status LED output current (max.): < 2 mA
  • Ten throttle types can be used with these controllers:
    • Type 0: 2-wire potentiometer, 0-5kΩ
    • Type 1: 2-wire potentiometer, 5kΩ-0
    • Type 2: single-ended 0-5V input
    • Type 3: 2-wire potentiometer, 4.6kΩ-0
    • Type 4: 2-wire potentiometer, 5.5kΩ-0
    • Type 5: 2-wire potentiometer, 1kΩ-0
    • Type 6: ITS input
    • Type 7: single-ended 6.3-10.6 V input
    • Type 8: single-ended 6-12 V input
    • Type 9: single-ended 3-wire potentiometer, 0-5kΩ
  • Dimensions: L173xW146xH77 mm
  • Net Weight: 2.3 kg
  • Operating ambient temperature range: -40°C to 50°C
  • Storage ambient temperature range: -40°C to 85°C
  • Package environmental rating: ISTA 2A; electronics sealed to IP65
  • Regulatory compliance: EN 12895 and EN 61000
Model No. Voltage Current Limit(A)
    2 Min) 1 Hour
1204M-42XX 24/36 275 125
1204M-53XX* 36 / 48 325 140
1204M-63XX* 48 / 72 325 140
1205M-46XX 24 / 36 500 (30 Sec) 175
1205M-56XX* 36 / 48 500 (1 Min) 200
1205M–6B3XX 60 / 72 400 (1 Min) 175

 

 

Application Vehicle Example

CURTIS 1204M programmable series motor controllers are designed to provide smooth, silent, cost-effective control of motor speed and torque. 1204M controllers are updated versions of the popular 1204 controllers, with the added functionality of being programmable-via the CURTIS Model 1313-4331 Handheld Programmer or 1314 PC Programming Station. This means the controllers can be tailored to the needs of specific applications. In addition to configuration flexibility, use of the programmer offers diagnostic and test capability.

CURTIS 1204M controllers are the ideal solution for a variety of electric vehicle applications, including industrial trucks, personnel carriers, material handing vehicles, golf cars, etc.

Packing and Shipping

 

 

  • Products And Services:

    Production Line:

    • Exhibition Pictures

       

       

       

      Company Profile

       

       

      Our company is located in HangZhou City, ZheJiang Province China, is the large-scale professional agriculture Machinery,Forklift Parts manufacturer with integration of  manufacturing, export and after-sale service. Establish in 2017, by now Forklift electrical accessories basically cover the vehicles of major domestic brands( Such as Zhongli,Nuoli,Afterburner,Heli,Baoli,TCM TEU)

      The company′s main products cover Electric Vehicles,Electric Forklifts,Motor Controller ,Lithium battery and sell parts and accessories for electric Vehicles ,including motors Electric Controls ,meters,accelerators,control handles ,DC converters,power connectors ,wiring harness,Various electrical switches and so on.

      We have professional quality inspection department, every machine will be tested 3 times before delivery in order to make sure the machinery in future. 

      With high quality product, competitive price, and best after-sale service, we have gained good reputation from all over the world, such as Europe, South Korea North, America, Central and South America, Africa, Australia, New Zealand and so on.Base on it ,we welcome buyers from all over the world.

      FAQ

       

      Q: Can I have a sample order?
      A: yes, we welcome sample orders to test and check quality.

      Q: Do you offer a guarantee for the products?
      A: Yes, we offer a 1-year warranty on our products.

      Q: Which shipping will you offer?
      A: By sea, air,  DHL, FedEx, TNT, UPS, EMS, SF 

      Q: How to proceed with an order?
      A: Firstly let us know your requirements or application. Secondly, We quote according to your requirements or our suggestions. Thirdly customer confirms the samples and places a deposit for formal order. Fourthly We arrange the production.

      Q: Is it OK to print my logo on the product?
      A: Yes. Please inform us formally before our production and confirm the design first based on our sample.

      Q: Do you have any MOQ limit?
      A: Low MOQ, 1pc for sample checking is available

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 3months-1year
Material: Stainless Steel
Customized: Customized
Samples:
US$ 188/Piece
1 Piece(Min.Order)

|

Order Sample

DC Motor
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

What is a DC motor, and how does it differ from other types of electric motors?

A DC (Direct Current) motor is an electric motor that converts electrical energy into mechanical motion. It operates based on the principle of electromagnetic induction and the interaction between current-carrying conductors and magnetic fields. DC motors are widely used in various applications due to their simplicity, controllability, and versatility. Here’s a detailed explanation of what a DC motor is and how it differs from other types of electric motors:

1. Basic Operation:

In a DC motor, electrical energy is supplied to the motor’s armature through a DC power source, typically a battery or a rectified power supply. The armature consists of multiple coils or windings that are evenly spaced around the motor’s rotor. The rotor is a cylindrical core with a shaft that rotates when the motor is energized. When current flows through the armature windings, it creates a magnetic field that interacts with the fixed magnetic field produced by the motor’s stator. This interaction generates a torque, causing the rotor to rotate.

2. Commutation:

DC motors employ a commutator and brushes for the conversion of electrical energy and the rotation of the rotor. The commutator consists of a segmented cylindrical ring attached to the rotor shaft, and the brushes are stationary conductive contacts that make contact with the commutator segments. As the rotor spins, the brushes maintain contact with the commutator segments, periodically reversing the direction of the current flow in the armature windings. This reversal of current flow in the armature windings ensures continuous rotation of the rotor in the same direction.

3. Types of DC Motors:

DC motors can be classified into different types based on their construction and the method of field excitation. The two main types are:

  • Brushed DC Motors: Brushed DC motors have a mechanical commutator and brushes to switch the current direction in the armature windings. These motors are relatively simple, cost-effective, and offer good torque characteristics. However, the commutator and brushes require regular maintenance and can generate electrical noise and brush wear debris.
  • Brushless DC Motors (BLDC): Brushless DC motors, also known as electronically commutated motors (ECMs), use electronic circuits and sensors to control the current flow in the motor windings. They eliminate the need for brushes and commutators, resulting in reduced maintenance and improved reliability. BLDC motors offer higher efficiency, smoother operation, and better speed control compared to brushed DC motors.

4. Speed Control:

DC motors provide excellent speed control capabilities. By adjusting the voltage applied to the motor, the speed of the DC motor can be regulated. Lowering the voltage reduces the motor’s speed, while increasing the voltage increases the speed. This feature makes DC motors suitable for applications that require precise speed control, such as robotics, conveyor systems, and electric vehicles.

5. Advantages and Disadvantages:

DC motors have several advantages, including:

  • Simple construction and easy maintenance (for brushed DC motors).
  • High starting torque.
  • Precise speed control.
  • Good controllability over a wide range of loads.

However, DC motors also have some limitations, such as:

  • Brushed DC motors require periodic maintenance and have limited brush life.
  • Brushed DC motors can generate electrical noise.
  • Brushless DC motors are often more expensive compared to brushed DC motors.

6. Differences from Other Electric Motors:

DC motors differ from other types of electric motors, such as AC (Alternating Current) motors, in several ways:

  • Power Source: DC motors require a DC power source, while AC motors operate from an AC power supply.
  • Speed Control: DC motors offer precise speed control by adjusting the applied voltage, whereas AC motors typically rely on frequency control for speed regulation.
  • Construction: DC motors use a commutator and brushes (in brushed DC motors) or electronic commutation (in brushless DC motors), while AC motors do not require commutation.
  • Starting Torque: DC motors typically provide higher starting torque compared to AC motors.

Overall, DC motors are versatile and widely used in various applications due to their controllability, speed regulation capabilities, and simplicity. The advancements inpower electronics and motor control technologies have further enhanced the performance and efficiency of DC motors, making them a popular choice in many industries.

dc motor

Are there specific types of DC motors designed for different industries or applications?

Yes, there are specific types of DC (Direct Current) motors that are designed and optimized for various industries and applications. DC motors offer a wide range of performance characteristics, allowing them to be tailored to specific requirements. Here’s a detailed explanation of the types of DC motors designed for different industries or applications:

1. Brushed DC Motors:

Brushed DC motors are commonly used in applications that require simple and cost-effective motor solutions. They are suitable for applications with lower efficiency requirements and where maintenance considerations are manageable. Some common industries and applications that use brushed DC motors include:

  • Automotive: Power window mechanisms, windshield wipers, cooling fans, and seat adjustment systems.
  • Consumer Electronics: Household appliances, toys, power tools, and personal care devices.
  • Industrial Machinery: Conveyors, pumps, fans, and machine tools.

2. Brushless DC Motors:

Brushless DC motors are known for their higher efficiency, greater reliability, and precise control capabilities. They are widely used in industries and applications that demand higher performance and advanced control features. Some specific industries and applications that utilize brushless DC motors include:

  • Automotive: Electric power steering systems, electric vehicles, hybrid vehicles, and HVAC systems.
  • Aerospace and Defense: Actuators, robotics, unmanned aerial vehicles (UAVs), and missile systems.
  • Medical and Laboratory Equipment: Centrifuges, pumps, robotics, and diagnostic devices.
  • Industrial Automation: CNC machines, robotics, automated guided vehicles (AGVs), and precision motion control systems.
  • Renewable Energy: Wind turbine generators, solar tracking systems, and energy storage systems.

3. High-Torque DC Motors:

High-torque DC motors are designed to provide substantial torque output at low speeds. They are commonly used in applications that require heavy lifting or high starting torque. Industries and applications that often utilize high-torque DC motors include:

  • Material Handling: Cranes, hoists, winches, lifts, and elevators.
  • Construction and Mining: Excavators, bulldozers, drilling rigs, and conveyor systems.
  • Automotive: Electric vehicles, electric powertrains, and traction control systems.
  • Marine and Shipbuilding: Thrusters, winches, and anchor handling systems.

4. Low-Voltage DC Motors:

Low-voltage DC motors are designed to operate at lower voltages, typically below 24 volts. They are commonly used in battery-powered applications and systems where safety or specific voltage requirements exist. Some industries and applications that utilize low-voltage DC motors include:

  • Automotive: Automotive accessories, window actuators, and door locks.
  • Robotics and Hobbyist Projects: DIY robots, RC vehicles, and model trains.
  • Solar Power Systems: Solar tracking systems, solar panel actuators, and solar-powered water pumps.
  • Home Automation: Automated blinds, curtains, and smart home devices.

These are just a few examples of the types of DC motors designed for different industries and applications. The versatility and adaptability of DC motors make them suitable for a wide range of uses, and manufacturers often offer customized motor solutions to meet specific requirements.

dc motor

What are the environmental implications of using DC motors, particularly in green technologies?

DC (Direct Current) motors offer several environmental benefits when used in green technologies. Their characteristics and operational advantages contribute to reducing environmental impact compared to other motor types. Here’s a detailed explanation of the environmental implications of using DC motors, particularly in green technologies:

1. Energy Efficiency:

DC motors are known for their high energy efficiency. Compared to AC (Alternating Current) motors, DC motors generally have lower energy losses and can convert a larger proportion of electrical input power into mechanical output power. This increased efficiency results in reduced energy consumption, leading to lower greenhouse gas emissions and decreased reliance on fossil fuels for electricity generation.

2. Renewable Energy Integration:

DC motors are well-suited for integration with renewable energy sources. Many green technologies, such as solar photovoltaic systems and wind turbines, produce DC power. By utilizing DC motors directly in these systems, the need for power conversion from DC to AC can be minimized, reducing energy losses associated with conversion processes. This integration improves the overall system efficiency and contributes to a more sustainable energy infrastructure.

3. Battery-Powered Applications:

DC motors are commonly used in battery-powered applications, such as electric vehicles and portable devices. The efficiency of DC motors ensures optimal utilization of the limited energy stored in batteries, resulting in extended battery life and reduced energy waste. By utilizing DC motors in these applications, the environmental impact of fossil fuel consumption for transportation and energy storage is reduced.

4. Reduced Emissions:

DC motors, especially brushless DC motors, produce fewer emissions compared to internal combustion engines or motors that rely on fossil fuels. By using DC motors in green technologies, such as electric vehicles or electrically powered equipment, the emission of greenhouse gases and air pollutants associated with traditional combustion engines is significantly reduced. This contributes to improved air quality and a reduction in overall carbon footprint.

5. Noise Reduction:

DC motors generally operate with lower noise levels compared to some other motor types. The absence of brushes in brushless DC motors and the smoother operation of DC motor designs contribute to reduced noise emissions. This is particularly beneficial in green technologies like electric vehicles or renewable energy systems, where quieter operation enhances user comfort and minimizes noise pollution in residential or urban areas.

6. Recycling and End-of-Life Considerations:

DC motors, like many electrical devices, can be recycled at the end of their operational life. The materials used in DC motors, such as copper, aluminum, and various magnets, can be recovered and reused, reducing the demand for new raw materials and minimizing waste. Proper recycling and disposal practices ensure that the environmental impact of DC motors is further mitigated.

The use of DC motors in green technologies offers several environmental benefits, including increased energy efficiency, integration with renewable energy sources, reduced emissions, noise reduction, and the potential for recycling and end-of-life considerations. These characteristics make DC motors a favorable choice for sustainable and environmentally conscious applications, contributing to the transition to a greener and more sustainable future.

China Good quality CHINAMFG 1205m-6b403 DC Motor Controller 60-72V 400A Forklift Parts Electric Motor   vacuum pump electricChina Good quality CHINAMFG 1205m-6b403 DC Motor Controller 60-72V 400A Forklift Parts Electric Motor   vacuum pump electric
editor by CX 2024-04-24

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *