China Professional Three Phase Motor Asynchronous Motor with DC Brake vacuum pump brakes

Product Description

Product Description

YEJ2 series electromatic-brake motors are improved products on the base of YEJ series. The technical properties of its motor conform to htere quirements of Y2 series. The performance of the brake assembly are improved. YEJ2 can make action proptly when the power of electric motor is off.

Motors of this series can continuously run at the rated power under the following conditions:
1. Altitude: Above sea level, not exceeding 1000m.
2. Ambient temperature: It varies with seasons but not exceeding +40° C
3. Voltage: 220/380V, 380/660V
4. Frequency: 50Hz, 60Hz.
5. Connection: Y-Connection for 3kw and below whereas; Delta-connection for 4 kw and above.
6. Duty: Continuous(S1)
7. Insulation Class: B, F
8. Protection: IP44, IP55 or IP54
 

Technical data-YEJ series motor-2 poles -380v/50HZ
type Rated output Full Load Static braking torque Max.braking time at No-load Brake power
Speed Input Current Efficiency PowTypeer factor
KW HP RPM Amp Eff.% P.F N.m S W
YEJ80M1-2 0.75 1.0  2825 1.81 75 0.84 7.5 0.20  50
YEJ80M2-2 1.1 1.5 2825 2.52 77 0.86 7.5 0.20  50
YEJ90S-2 1.5 2.0  2840 3.44 78 0.85 15 0.20  60
YEJ90L-2 2.2 3.0  2840 4.83 80.5 0.86 15 0.20  60
YEJ100L-2 3 4.0  2870 6.39 82 0.87 30 0.20  80
YEJ112M-2 4 5.5 2880 8.17 85.5 0.87 40 0.25 110
YEJ132S1-2 5.5 7.5 2900 11.10  85.5 0.88 75 0.25 130
YEJ132S2-2 7.5 10.0  2900 15.00  86.2 0.88 75 0.25 130
YEJ160M1-2 11 15 2930 21.80  87.2 0.88 150 0.35 150
YEJ160M2-2 15 20 2930 29.40  88.2 0.88 150 0.35 150
YEJ160L-2 18.5 25 2930 35.50  89.0  0.89 150 0.35 150
YEJ180M-2 22 30 2940 42.20  89.0  0.89 200 0.35 150
YEJ200L1-2 30 40 2950 56.90  90.0  0.89 300 0.45 200
YEJ200L2-2 37 50 2950 69.80  90.5 0.89 300 0.45 200
YEJ225M-2 45 60 2960 83.90  91.5 0.89 450 0.45 200
                   
Technical data-YEJ series motor-4 poles -380v/50HZ
Type Rated output Full Load Static braking torque Max.braking time at No-load Brake power
Speed Input Current Efficiency Power factor
KW HP RPM Amp Eff.% P.F N.m S W
YEJ80M1-4 0.55 0.75 1390 1.51 73.0  0.76 7.5 0.20  50
YEJ80M2-4 0.75 1.0  1390 2.01 74.5 0.76 7.5 0.20  50
YEJ90S-4 1.1 1.5 1400 2.75 78.0  0.78 15 0.20  60
YEJ90L-4 1.5 2.0  1400 3.65 79.0  0.79 15 0.20  60
YEJ100L1-4 2.2 3.0  1420 5.03 81.0  0.82 30 0.20  80
JET100L2-4 3.0  4.0  1420 6.82 82.5 0.81 30 0.20  80
YEJ112M-4 4.0  5.5 1440 8.77 84.5 0.82 40 0.25 110
YEJ132S-4 5.5 7.5 1440 11.60  85.5 0.84 75 0.25 130
YEJ132M-4 7.5 10.0  1440 15.40  87.0  0.85 75 0.25 130
YEJ160M-4 11 15 1460 22.60  88.0  0.84 150 0.35 150
YEJ160L-4 15 20 1460 30.30  88.5 0.85 150 0.35 150
YEJ180M-4 18.5 25 1465 35.90  91.0  0.86 200 0.35 150
YEJ180L-4 22 30 1465 42.50  91.5 0.86 200 0.35 150
YEJ200L-4 30 40 1470 56.80  92.2 0.87 300 0.45 200
YEJ225S-4 37 50 1475 70.40  91.8 0.87 450 0.45 200
YEJ225M-4 45 60 1475 84.20  92.3 0.88 450 0.45 200
                   
Technical data-YEJ series motor-6 poles -380v/50HZ
Type Rated output Full Load Static braking torque Max.braking time at No-load Brake power
Speed Input Current Efficiency Power factor
KW HP RPM Amp Eff.% P.F N.m S W
YEJ90S-6 0.75 1.0  910 2.25 72.5 0.7 15 0.2 60
YEJ90L-6 1.1 1.5 910 3.16 73.5 0.72 15 0.2 60
YEJ100L-6 1.5 2.0  930 3.97 77.5 0.74 30 0.2 80
YEJ112M-6 2.2 3.0  940 5.61 80.5 0.74 40 0.25 110
YEJ132S-6 3.0  4.0  960 7.23 83.0  0.76 75 0.25 130
YEJ132M1-6 4.0  5.5 960 9.40  84.0  0.77 75 0.25 130
YEJ132M2-6 5.5 7.5 960 12.60  85.3 0.78 75 0.25 130
YEJ160M-6 7.5 10.0  970 17.00  86.0  0.78 150 0.35 150
YEJ160L-6 11 15 970 24.60  87.0  0.78 150 0.35 150
YEJ180L-6 15 20 970 31.40  89.5 0.81 200 0.35 150
YEJ200L1-6 18.5 25 975 37.70  89.8 0.83 300 0.45 200
YEJ200L2-6 22 30 975 44.60  90.2 0.83 300 0.45 200
YEJ225M-6 30 40 980 59.50  92.2 0.85 450 0.45 200

Detailed Photos

Our Advantages

We have more than 30years on all kinds of ac motors and gearmotor ,worm reducers producing ,nice price 
What we do:
1.Stamping of lamination
2.Rotor die-casting
3.Winding and inserting – both manual and semi-automatically
4.Vacuum varnishing
5.Machining shaft, housing, end shields, etc…
6.Rotor balancing
7.Painting – both wet paint and powder coating
8.assembly
9.Packing
10.Inspecting spare parts every processing
11.100% test after each process and final test before packing.,
 

FAQ

Q: Do you offer OEM service?
A: Yes
Q: What is your payment term?
A: 30% T/T in advance, 70% balance when receiving B/L copy. Or irrevocable L/C.
Q: What is your lead time?
A: About 30 days after receiving deposit or original L/C.
Q: What certifiicates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, etc.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial ,Universal ,etc
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Control
Casing Protection: Protection Type
Number of Poles: 2.4.6.8p
Samples:
US$ 618/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

In which applications are DC motors commonly used, and what advantages do they offer?

DC (Direct Current) motors are widely used in various applications due to their versatility, controllability, and specific advantages they offer. Here’s a detailed explanation of the common applications of DC motors and the advantages they provide:

1. Robotics:

DC motors are extensively used in robotics for precise control of movement and manipulation. They provide high torque and speed control, allowing robots to perform tasks with accuracy and efficiency. DC motors enable robotic arms, grippers, and mobile robots to execute complex motions and interact with their environment effectively.

2. Industrial Automation:

In industrial automation, DC motors are employed in conveyors, actuators, and positioning systems. The ability to control the motor speed and torque makes them suitable for applications such as material handling, assembly lines, and CNC machines. DC motors offer precise control over acceleration, deceleration, and positioning, enhancing overall productivity and efficiency in manufacturing processes.

3. Electric Vehicles:

DC motors have been widely used in electric vehicles (EVs) for many years. They are commonly found in electric cars, motorcycles, and scooters. DC motors provide high torque from standstill, enabling efficient acceleration and smooth operation. They also offer regenerative braking capabilities, which help in energy recovery during deceleration, thereby increasing the vehicle’s overall efficiency.

4. Appliances:

DC motors are utilized in various household appliances, including fans, blenders, vacuum cleaners, and refrigerators. Their controllable speed and torque allow for efficient operation and improved energy consumption. In appliances where variable speed control is required, such as ceiling fans or blender settings, DC motors offer precise adjustment options to meet different user preferences.

5. Renewable Energy Systems:

DC motors play a crucial role in renewable energy systems, such as wind turbines and solar tracking systems. They convert the rotational energy from wind or sunlight into electrical energy. DC motors enable precise tracking of the sun’s movement for optimal solar energy collection and efficient conversion of wind energy into electricity.

6. Advantages of DC Motors:

DC motors offer several advantages that make them suitable for various applications:

  • Precise Speed Control: DC motors provide accurate and adjustable speed control, allowing for precise regulation of motor output.
  • High Starting Torque: DC motors deliver high torque at startup, making them suitable for applications requiring quick acceleration or heavy loads.
  • Controllability: DC motors can be easily controlled using voltage regulation, current limiting, and feedback control techniques.
  • Efficiency: DC motors have high efficiency, especially when operating at lower speeds.
  • Reliability: DC motors are known for their robustness and reliability, requiring minimal maintenance.
  • Compact Size: DC motors are available in various sizes and can be designed compactly, making them suitable for applications with space constraints.

These advantages make DC motors an attractive choice in various industries and applications where precise control, high starting torque, and reliability are essential.

dc motor

How do DC motors compare to AC motors in terms of performance and efficiency?

When comparing DC (Direct Current) motors and AC (Alternating Current) motors, several factors come into play, including performance and efficiency. Here’s a detailed explanation of how DC motors and AC motors compare in terms of performance and efficiency:

1. Performance:

Speed Control: DC motors typically offer better speed control compared to AC motors. DC motors can be easily controlled by varying the voltage applied to the armature, allowing for precise and smooth speed regulation. On the other hand, AC motors rely on complex control methods such as variable frequency drives (VFDs) to achieve speed control, which can be more challenging and costly.

Starting Torque: DC motors generally provide higher starting torque compared to AC motors. The presence of a separate field winding in DC motors allows for independent control of the field current, enabling higher torque during motor startup. AC motors, especially induction motors, typically have lower starting torque, requiring additional starting mechanisms or devices.

Reversibility: DC motors offer inherent reversibility, meaning they can easily change their rotational direction by reversing the polarity of the applied voltage. AC motors, particularly induction motors, require more complex control mechanisms to achieve reversible operation.

Dynamic Response: DC motors have faster dynamic response characteristics compared to AC motors. They can quickly accelerate or decelerate, making them suitable for applications that require rapid changes in speed or precise control, such as robotics or servo systems.

2. Efficiency:

Full Load Efficiency: AC motors, especially three-phase induction motors, generally exhibit higher full load efficiencies compared to DC motors. This efficiency advantage is primarily due to the absence of commutation and the use of a rotating magnetic field in AC motors, which results in reduced energy losses and improved efficiency.

Partial Load Efficiency: DC motors can have higher efficiency at partial loads compared to AC motors. DC motors can be controlled by adjusting the armature voltage, allowing them to operate at reduced power while maintaining relatively high efficiency. AC motors, especially induction motors, may experience reduced efficiency at partial loads due to factors such as increased iron losses and reduced power factor.

Regenerative Braking: DC motors offer the advantage of regenerative braking, where the motor acts as a generator and converts kinetic energy into electrical energy during deceleration or braking. This regenerative braking capability allows for energy recovery, increasing overall system efficiency. AC motors typically require additional components or systems to achieve regenerative braking.

Power Factor: AC motors, when properly designed and operated, can have a power factor close to unity. This means that they draw relatively low reactive power from the electrical grid, resulting in improved power system efficiency. DC motors, on the other hand, may exhibit a lower power factor and require power factor correction measures if necessary.

In summary, DC motors and AC motors have their respective strengths and weaknesses in terms of performance and efficiency. DC motors excel in speed control, starting torque, reversibility, and dynamic response. AC motors, particularly three-phase induction motors, generally offer higher full load efficiency and power factor. However, DC motors can achieve higher efficiency at partial loads and have the advantage of regenerative braking. The choice between DC motors and AC motors depends on the specific application requirements, cost considerations, and the desired balance between performance and efficiency.

dc motor

Can DC motors be used in robotics, and if so, what are some notable applications?

Yes, DC (Direct Current) motors can be used in robotics, and they are widely employed in various robotic applications. DC motors offer several advantages that make them suitable for robotic systems, including their controllability, compact size, and versatility. Here’s a detailed explanation of how DC motors are used in robotics and some notable applications:

DC Motors in Robotics:

DC motors are commonly used in robotics due to their ability to provide precise speed control and torque output. They can be easily controlled by adjusting the voltage applied to the motor, allowing for accurate and responsive motion control in robotic systems. Additionally, DC motors can be designed in compact sizes, making them suitable for applications with limited space and weight constraints.

There are two main types of DC motors used in robotics:

  1. DC Brushed Motors: These motors have a commutator and carbon brushes that provide the electrical connection to the rotating armature. They are relatively simple in design and cost-effective. However, they may require maintenance due to brush wear.
  2. DC Brushless Motors: These motors use electronic commutation instead of brushes, resulting in improved reliability and reduced maintenance requirements. They are often more efficient and offer higher power density compared to brushed motors.

Notable Applications of DC Motors in Robotics:

DC motors find applications in various robotic systems across different industries. Here are some notable examples:

1. Robotic Manipulators: DC motors are commonly used in robotic arms and manipulators to control the movement of joints and end-effectors. They provide precise control over position, speed, and torque, allowing robots to perform tasks such as pick-and-place operations, assembly, and material handling in industrial automation, manufacturing, and logistics.

2. Mobile Robots: DC motors are extensively utilized in mobile robots, including autonomous vehicles, drones, and rovers. They power the wheels or propellers, enabling the robot to navigate and move in different environments. DC motors with high torque output are particularly useful for off-road or rugged terrain applications.

3. Humanoid Robots: DC motors play a critical role in humanoid robots, which aim to replicate human-like movements and capabilities. They are employed in various joints, including those of the head, arms, legs, and hands, allowing humanoid robots to perform complex movements and tasks such as walking, grasping objects, and facial expressions.

4. Robotic Exoskeletons: DC motors are used in robotic exoskeletons, which are wearable devices designed to enhance human strength and mobility. They provide the necessary actuation and power for assisting or augmenting human movements, such as walking, lifting heavy objects, and rehabilitation purposes.

5. Educational Robotics: DC motors are popular in educational robotics platforms and kits, including those used in schools, universities, and hobbyist projects. They provide a cost-effective and accessible way for students and enthusiasts to learn about robotics, programming, and control systems.

6. Precision Robotics: DC motors with high-precision control are employed in applications that require precise positioning and motion control, such as robotic surgery systems, laboratory automation, and 3D printing. The ability of DC motors to achieve accurate and repeatable movements makes them suitable for tasks that demand high levels of precision.

These are just a few examples of how DC motors are used in robotics. The flexibility, controllability, and compactness of DC motors make them a popular choice in a wide range of robotic applications, contributing to the advancement of automation, exploration, healthcare, and other industries.

China Professional Three Phase Motor Asynchronous Motor with DC Brake   vacuum pump brakesChina Professional Three Phase Motor Asynchronous Motor with DC Brake   vacuum pump brakes
editor by CX 2024-04-26

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *